r x c Contingency Table

Chi-square Test for Independence or Homogeneity
Purpose: comparing percentages or testing of association.

Study of the effectiveness of antidepressant

	Relapse		Ros
No	10	Row Total	
Desipramine			24
Lithium	14	18	24
Placebo	6	20	24
Column Total	4	48	72

Hypothesis:

Ho: There is NO relation between variable 1 (treatment) and variable 2 (outcome variables).
Ha : There is relation between two variables.

Compare Observed and Expected Frequencies

	Relapse				Row Total
	No		Yes		
Desipramine	14	(8)	10	(16)	24
Lithium	6	(8)	18	(16)	24
Placebo	4	(8)	20	(16)	24
Column Total	24				72

Numbers in (..) :
(i,j)th cell expected freq. $=\frac{\mathrm{M}_{\mathrm{i}} \times \mathrm{N}_{\mathrm{j}}}{\mathrm{T}}$
M_{i} : i-th column total
N_{j} : j-th row total
T : grand total

Test Statistic:

Test Statistics:

$$
\chi^{2}=\sum_{i=1}^{r c} \frac{\left(O_{\mathrm{i}}-E_{\mathrm{i}}\right)^{2}}{E_{\mathrm{i}}} \sim \chi^{2}(\{\mathrm{r}-1\}\{\mathrm{c}-1\})
$$

Cochran's guidelines: (Assumption: Large sample.)

- None of the expected cell counts less than 1
- No more than 20% of the expected cell frequencies are less than 5.

Decision Rule:

If $\chi^{2}>\chi^{2}{ }_{\alpha}$ or p-value $<\alpha$, the null hypothesis is rejected.
Test Statistics: $\chi^{2}=\frac{(14-8)^{2}}{8}+\frac{(10-16)^{2}}{16}+\frac{(6-8)^{2}}{8}+\frac{(18-16)^{2}}{16}+\frac{(4-8)^{2}}{8}+\frac{(20-16)^{2}}{16}$

$$
=10.5
$$

d.f. $=(3-1)(2-1)=2 \Rightarrow \chi^{2}{ }_{.05}=5.99 \quad$ (Chi-square table)
C.V. approach: Since $\chi^{2}=10.5>\chi^{2} .05=5.99$, so we reject null hypothesis. (See Table A.8, page A-26.)
p-value approach: With $\chi^{2}=10.5>9.210$, the \boldsymbol{p}-value of the test is less than 0.01 , null hypothesis is rejected.

Conclusion: The relation between treatment and outcome variables is statistically significant.
2×2 Contingency Table (A special case of $\mathbf{r x c}$ table)

Test Statistics:

$\chi^{2}=\sum_{i=1}^{r c} \frac{\left(\left|O_{\mathrm{i}}-E_{\mathrm{i}}\right|-0.5\right)^{2}}{E_{\mathrm{i}}} \sim \chi^{2}(1)$, with Yate's correction, " -0.5 "

Example:

Is there a relationship between treatment and heart disease?
(Is there a difference in the percentages of heart disease between people who took Placebo and those who took Aspirin?)

	Heart Disease		No -
Group	Yes +	$80(86)$	100
Placebo	$20(14)$	$135(192)$	150
Aspirin	$15(21)$	215	250
Total	35		

$35 \times 100 / 250=14$,
$35 \times 150 / 250=21$,
$215 \times 100 / 250=86$,
$215 \times 150 / 250=192$

Test Statistic:

$$
\begin{aligned}
\chi^{2}= & \frac{(|20-14|-.5)^{2}}{14}+\frac{(|80-86|-.5)^{2}}{86}+\frac{(|15-21|-.5)^{2}}{21}+\frac{(|135-192|-.5)^{2}}{192} \\
& =4.19 \\
& \text { d.f. }=(2-1)(2-1)=1 \Rightarrow \chi_{.05}{ }^{2}=3.84 \quad \text { (Chi-square table) }
\end{aligned}
$$

C.V. approach:

Since $\chi^{2}=4.19>\chi^{2} .05=3.84$, reject null hypothesis.
p-value approach:
With $\chi^{2}=4.19, .025<p$-value $<.05$, null hypothesis is rejected.
Conclusion: There is significant association between the use of Aspirin and heart disease.
An equivalent formula:

	Heart Disease		
Group	Yes +	No -	Total
Placebo	a	b	$a+b$
Aspirin	c	d	$c+d$
Total	$a+c$	$b+d$	n

Test Statistics: $\quad \chi^{2}=\frac{n[|a d-b c|-(n / 2)]^{2}}{(a+c)(b+d)(a+b)(c+d)} \sim \chi^{2}(1), \quad$ (computational convenient)
Example:
In Aspirin example : $\chi^{2}=\frac{250[|(20)(135)-(80)(15)|-(250 / 2)]^{2}}{(20+15)(80+135)(20+80)(15+135)}=4.19$
(For small sample, Fisher's Exact Test can be used for 2×2 contingency table.)

Example: Suppose we want to determine if people with a rare brain tumor are more likely to have been exposed to benzene than people without a brain tumor. One experimental design used to answer this question. First, we start with cases, people with a disease or condition (brain tumor) and find people who are as similar as possible but who do not have brain tumors. Those people are called controls.

$\left.\begin{array}{|c|cc|c|}\hline & \text { Case } & \text { Outcome } & \text { Control }\end{array}\right]$ Total | Exposure | 50 | 20 |
| :---: | :---: | :---: |
| 230 | | |
| Yes | 100 | 150 |
| No | 150 | 300 |
| Total | | |

At the level of significance $\alpha=0.05$, are "exposure to benzene" and "have brain tumors" independent?

McNemar's Test (Paired-sample test)

Example: A program is designed to promote people to join public health profession. Is there a significant change in the percentage of people who wish to join the public health profession.

Hypothesis:

Ho: There is no association between the promotion program and the people who wish to join the public health profession or not. (There is no association between two categorical variables.)
$\mathrm{H} a: \quad$ There is association between two variables.
(Pairs of dichotomous observations were collected.)

	Yes	Before	
After	9	No	Total
Yes	$\mathbf{3 7}$	46	
No	$\mathbf{1 6}$	82	98
Total	25	119	144

Concordant pairs - provide no information for testing a null hypothesis about the difference in willing to join public health profession status. (i.e. 9,82)
Discordant pairs - provide information for testing a null hypothesis about the difference in willing to join public health profession status. (i.e. $\mathrm{r}=37, \mathrm{~s}=16$)
(If null hypothesis is true the discordant pairs should be almost equal to each other.)
Test Statistic: (based on discordant pairs)

$$
\chi^{2}=\frac{[|r-s|-1]^{2}}{(r+s)} \sim \chi^{2}(1)
$$

he example has a test statistic $\chi^{2}=\frac{[|37-16|-1]^{2}}{(37+16)}=7.5$
Decision Rule: $\chi^{2}=7.5>\chi^{2}{ }_{.05}=3.84$, or p-value $<.05$, therefore, reject the null hypothesis.

The Odds Ratio

A method for estimating the effect of the exposure effect.
Risk factor is a variable that is thought to be related to some outcome variable, and it may be a suspected cause of some specific state of this outcome variable.

	Risk Factor		
Outcome	Exposed	Unexposed	Total
Disease	a	b	$a+b$
No Disease	c	d	$c+d$
Total	$a+c$	$b+d$	n

$(a+b+c+d=n)$

	Risk Factor		
Outcome	Exposed	Unexposed	Total
Disease	a	b	$a+b$
No Disease	c	d	$c+d$
Total	$a+c$	$b+d$	n

The odds of getting the disease, given that one has the exposure, are
$O_{+}=P$ [disease | exposed] / P [no disease | exposed], can be estimated by $[a /(a+c)] /[c /(a+c)]$ or a / c

The odds of getting the disease, given that one has no exposure, are
$O_{-}=P$ [disease | unexposed] / P [no disease | unexposed], can be estimated by $[b /(b+d)] /[d /(b+d)]$ or b / d

	Risk Factor		
Outcome	Exposed	Unexposed	Total
Disease	a	b	$a+b$
No Disease	c	d	$c+d$
Total	$a+c$	$b+d$	n

The odds ratio, $\boldsymbol{O R}$, is then defined to be $\frac{O_{+}}{O_{-}}$, and its estimate $\quad O \hat{R}=\frac{[a /(a+c)] /[c /(a+c)]}{[b /(b+d)] /[d /(b+d)]}=\frac{a / c}{b / d}=\frac{a d}{b c}$

Example: Suppose we want to determine if people with a rare brain tumor are more likely to have been exposed to benzene than people without a brain tumor. One experimental design used to answer this question. First, we start with cases, people with a disease or condition (brain tumor) and find people who are as similar as possible but who do not have brain tumors. Those people are called controls.

	Exposure	No	Total
Outcome	Yes	100	150
Case	50	130	150
Control	20	230	300
Total	70		

Odds ratio $=(50 / 20) /(100 / 130)=(50 \times 130) /(20 \times 100)=3.25$
(Is the odds ratio different from 1?)

	Risk Factor		
Outcome	Exposed	Unexposed	Total
Disease	a	b	$a+b$
No Disease	c	d	$c+d$
Total	$a+c$	$b+d$	n

Relative risk, $\boldsymbol{R} \boldsymbol{R}$, is a standard measure of strength of the exposure effect and is defined to be
$R R=P$ [disease \mid exposed] $/ P$ [disease | unexposed]
and its estimate $\quad R \hat{R}=\frac{a /(a+c)}{b /(b+d)}=\frac{a(b+d)}{b(a+c)} \approx \frac{a d}{b c}=O \hat{R}$
When a and b are small relative to the values of c and d Odds Ratio is a good estimate of the relative risk.
Example: Suppose we conducted a prospective cohort study to investigate the effect of aspirin on heart disease. A group of patients who are at risk for a heart attack are randomly assigned to either a placebo or aspirin. At the end of one year, the number of patients suffering a heart attack is recorded.

	Placebo	Group	Aspirin
Heart Disease	20	15	35
Yes +	80	135	215
No -	100	150	250
Total			

Relative risk $=(20 / 100) /(15 / 150)=.2 / .1=2$
(The risk of a heart attack for people on placebo is twice that of people on aspirin.)

	Risk Factor		
Outcome	Exposed	Unexposed	Total
Disease	a	b	$a+b$
No Disease	c	d	$c+d$
Total	$a+c$	$b+d$	n

The $(1-\alpha) \mathbf{1 0 0 \%}$ confidence interval estimate for the Odds Ratio is

$$
\left(e^{\ln (O \hat{R})-z_{\alpha / 2} \cdot s^{*}}, e^{\ln (O \hat{R})+z_{\alpha / 2} \cdot s^{*}}\right)
$$

where $O \hat{R}=\frac{a d}{b c}$, standard error of $\ln \left(O \hat{R}^{)}\right.$is $\mathrm{s}^{*}=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \quad$, and a, b, c and d should not be zero.
The modified estimate is $\mathrm{s}^{*}=\sqrt{\frac{1}{a+.5}+\frac{1}{b+.5}+\frac{1}{c+.5}+\frac{1}{d+.5}}$
Example: In brain tumor example, the 95% confidence interval estimate for the odds ratio of getting brain tumor for person exposed to benzene versus not is $\left(e^{\ln (3.25)-1.96 \cdot s^{*}}, e^{\ln (3.25)+1.96 \cdot s^{*}}\right)$,
where $O \hat{R}=\frac{a d}{b c}=3.25$,
(People exposed to benzene are more than 3 times as likely to get brain tumor.)
$\mathrm{s}^{*}=\sqrt{\frac{1}{50+.5}+\frac{1}{100+.5}+\frac{1}{20+.5}+\frac{1}{130+.5}}=.294$.
The 95% confidence interval is $\left(e^{\ln (3.25)-1.96(.294)}, e^{\ln (3.25)+1.96(.294)}\right) \Rightarrow(\mathbf{1 . 8 3}, 5.78)$, and it does not contain 1.

This implies that there is significant association between benzene exposure and brain tumor.
(There is also confidence interval estimate for RR.)

Odds Ratio Estimation for Paired-sample

The sample Odds Ratio of getting disease (or getting result) from exposed to the risk (or improvement) factor versus not for paired dichotomous data is $O \hat{R}=\mathbf{r} / \mathbf{s}(=37 / 16=2.31$. $)$

The $(1-\alpha) \mathbf{1 0 0 \%}$ confidence interval estimate of the odds ratio for "paired dichotomous data" is

$$
\left(e^{\ln (O \hat{R})-z_{\alpha / 2} \cdot s^{*}}, e^{\ln (O \hat{R})+z_{\alpha / 2} \cdot s^{*}}\right)
$$

where $\mathrm{s}^{*}=\sqrt{\frac{r+s}{r s}}=\sqrt{\frac{37+16}{(37)(16)}}=.299$
Example: (Promotion for public health program) The 95\% confidence interval estimate of the odds ratio of wishing to join public health profession after promotion program versus before promotion program is
$O \hat{R}=\mathbf{r} / \mathbf{s}(=37 / 16=2.31$.
$\mathrm{s}^{*}=\sqrt{\frac{r+s}{r s}}=\sqrt{\frac{37+16}{(37)(16)}}=.299$
$\left(e^{\ln (2.31)-1.96(.299)}, e^{\ln (2.31)+1.96(.299)}\right)$
$\Rightarrow(1.29,4.15)$.
This interval does not cover 1, it implies that there is significant effect from the promotional program.

Berkson's Fallacy

An investigation surveyed 2784 individuals, 257 of them were hospitalized and examined to determine whether each subject suffered from a disease of the circulatory system or a respiratory illness or both. From only those 257 patients, the chi-square test indicates that there is significant association between having respiratory illness and having circulatory disease.
(Table with 257 individuals)

	Respiratory Disease		
Circulatory Disease	Yes	No	Total
Yes	7	29	36
No	13	208	221
Total	20	237	257

odds ratio $=(7)(208) /(29)(13)=3.86, \quad p$-value $<.025$
(Table with 2784 individuals)

	Respiratory Disease		
Circulatory Disease	Yes	No	Total
Yes	22	171	193
No	202	2389	2591
Total	224	2560	2784

Odds ratio $=1.52$, p -value >0.1 ?????

Simpson's Paradox

Example: (City College Admissions)

Overall: Admission rate for men is higher than women.
The Whole School

	Admitted	No admitted	Total
Men	198	162	360
Women	88	112	200
Total	286	274	560

Men admitted = 55\%
Women admitted $=\mathbf{4 4 \%}$
Sample OR of men versus women $=(198)(112) /(162)(88)=1.56$
In separate schools: Admission rate for women is higher than men.??? Lurking variable "schools"
Business School

	Admitted	No admitted	Total
Men	18	102	120
Women	24	96	120
Total	42	198	240

Men admitted = 15\%, Women admitted $=\mathbf{2 0 \%}$
Sample OR of men versus women $=(18)(96) /(102)(24)=0.71$
Law School

	Admitted	No admitted	Total
Men	180	60	240
Women	64	16	80
Total	244	76	320

Men admitted =75\%, Women admitted $=\mathbf{8 0 \%}$
Sample OR of men versus women $=(180)(16) /(60)(64)=0.75$

The Mantel-Haenszel Method

This same technique can also be used to combine results from several studies identified in a literature search on a specific topic. This technique is sometimes referred to as meta-analysis.

Steps:

1. Test of Homogeneity of Odds Ratios for all contingency tables.
2. Summary Odds Ratio: $O \hat{R}=\frac{\sum_{i=1}^{g} a_{i} d_{i} / T_{i}}{\sum_{i=1}^{g} b_{i} c_{i} / T_{i}}, \boldsymbol{T}_{\boldsymbol{i}}$ total of the \boldsymbol{i}-th table.
3. Test of Association: Ho: $\mathrm{OR}=1$ v.s. Ha: $\mathrm{OR} \neq 1$.

$$
\chi^{2}=\frac{\left[\sum_{i=1}^{g} a_{i}-\sum_{i=1}^{g} m_{i}\right]^{2}}{\sum_{i=1}^{g} \sigma_{i}^{2}} \sim \chi^{2}(1),
$$

where $\quad a_{i}=$ count in the a cell count on the i-th table,

$$
m_{i}=\frac{M_{1 i} N_{1 i}}{T_{i}} \quad \sigma_{i}^{2}=\frac{M_{1 i} N_{1 i} M_{2 i} N_{2 i}}{T_{i}^{2}\left(T_{i}-1\right)}
$$

$M_{1 i}=$ the 1-th column total of the i-th table, $N_{1 i}=$ the 1-th row total of the i-th table,
$M_{2 i}=$ the 2-nd column total of the i-th table, $N_{2 i}=$ the 2-nd row total of the i-th table,
$T_{i}=$ the grand total of the i-th table.

Sleep	LowHigh	Test results, Boys	
		Fai	Pass
		20	100
		15	150

	Test results, Girls	
Fail	Pass	
Low	30	100
High	25	200

Sleep variable is the risk factor
(Low => less than 8 hours, High => more than 8 hours)
The Breslow-Day test for homogeneity of the odds ratio is not significant (p-value $=.698$), so we can be comfortable in combining these two tables.
The Odds Ratio of failing the test for low sleep hours v.s. high sleep hours can be estimated with confidence interval.

Following is SAS output (Output from another statistical software)

```
Mantel-Haneszel Chi-square Test
SUMMARY STATISTICS FOR SLEEP BY RESULTS CONTROLLING FOR GENDER
```


The confidence bounds for the $M-H$ estimates are test-based.

Breslow-Day Test for Homogeneity of the Odds Ratios

```
Chi-Square = 0.150
DF = 1
    Prob = 0.698
    Total Sample Size = 640
```

