
A Brief Introduction to R

August 25, 2010

This is a document designed to help a person to begin to get to know the R statistical computing environment.
It paraphrases and summarizes information gleaned from materials listed in the References. Please refer to
them for a more complete treatment.

1 Installing R and the IPSUR Package
There are detailed instructions for installing R on your personal computer at the following website:

http://ipsur.r-forge.r-project.org/book/installation.php

For more complete and technical installation instructions see the R Installation and Administration Manual.

http://cran.r-project.org/doc/manuals/R-admin.html

2 Communicating with R
There are three basic methods for communicating with the software.

1. At the Command Prompt (>).

This is the most basic way to complete simple, one-line commands. R will evaluate what is typed there
and output the results in the Console Window.

2. Copy & Paste from a text file.

For longer programs (called scripts) there is too much code to write all at once at the Command Prompt.
Further, for long scripts the user sometimes wishes to only modify a certain piece of the script and run it
again in R.

One way to do this is to open a text file with a text editor (say, NotePad or MS-Wordr). One writes the
code in the text file, then when satisfied the user copy-and-pastes it at the Command Prompt in R. Then
R will compile all of the code at once and give output in the Console Window.

Alternatively, R provides its own built-in script editor, called R Editor. From the console window, select
File → New Script. A script window opens, and the lines of code can be written in the window. When
satisfied with the code, the user highlights all of the commands and presses Ctrl+R. The commands are
automatically run at once in R and the output is shown. To save the script for later, click File → Save
as... in R Editor. The script can be reopened later with File → Open Script... in the Console Window.

A disadvantage to these methods is that all of the code is written in the same way, with the same font. It
can become confusing with longer scripts, and there is no way to efficiently identify mistakes in the code.
To address this problem, software developers have designed powerful IDE / Script Editors.

3. IDE / Script Editors.

There are free programs specially designed to aid the communication and code writing process. The
advantage to using Script Editors is that they have additional functions and options to help the user write
code more efficiently, including R syntax highlighting, automatic code completion, delimiter matching,
and dynamic help on the R functions as they are written. In addition, they typically have all of the text
editing features of programs like MS Word. Lastly, most script editors are fully customizable in the sense
that the user can customize the appearance of the interface and can choose what colors to display, when
to display them, and how they are to be displayed.

i

http://ipsur.r-forge.r-project.org/book/installation.php
http://cran.r-project.org/doc/manuals/R-admin.html

Some of the more popular script editors can be downloaded from the R-Project website at
http://www.sciviews.org/_rgui/. On the left side of the screen (under Projects) there are several
choices available.

• RWinEdt: You can get this from IDE/Script Editors, under the section on Uwe Ligges. This
program has a window based on WinEdt for LATEX and has features such as code highlighting,
remote sourcing, and all of the familiar ones of WinEdt. Unfortunately, this one is only Shareware,
so you first need to download WinEdt, and then it is only free for a while. Eventually, annoying
windows will pop-up asking if you want to register. This would be a fine choice if you like LATEX and
have WinEdt already, or are planning on purchasing WinEdt in the future.

• Tinn-R: This one has the advantage of being completely free, with no additional requirements. It
has all of the above mentioned options and lots more. It is simple enough to use that the user can
virtually begin working with the program immediately after installation. Unfortunately, this program
is only availabe for Windows based systems.

• Bluefish: This open-source script editor is for Mac OSX users. Other alternatives for Mac users
are SubEthaEdit, AlphaTk, and Eclipse. I have not used these yet, so I cannot comment on their
strngths and weaknesses. Try them out, and let me know!

• Emacs / ESS: Click Emacs (ESS) or Emacs (ESS/Windows). This will take you to download sites
with sophisticated programs for editing, compiling, and coordinating software such as S-Plus, R, and
SAS simultaneously. Emacs is short for Editing MAC roS and ESS means Emacs Speaks S tatistics.
An alternate branch of Emacs is called XEmacs. This editor is – by far – the most powerful of the
text editors, but all of the flexibility comes at a price. Emacs requires a level of computer-saavy that
the others do not, and the learning curve is more steep. If you want to explore this option, then
speak with me beforehand; I can give you some advice about getting started.

3 A First Session: Using R as a calculator
R is perfectly able to do standard calculations. For example, type 2 + 3 and observe

> 2+3
[1] 5
>

The [1] means that the 5 is the first entry in the list, and the > means that R is waiting on your next command.
Entry numbers will be generated for each row, such as

> 3:50
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[19] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
[36] 38 39 40 41 42 43 44 45 46 47 48 49 50

Here, the 19th entry in the list is 21. Notice also the 3:50 notation, which generates all numbers in sequence
from 3 to 50. One can also do things like

> 2*3*4*5 # multiply
[1] 120

> sqrt(10) # square root
[1] 3.162278

> pi # pi
[1] 3.141593

> sqrt(-2)
[1] NaN
Warning message:
NaNs produced in: sqrt(-2)

Notice that NaNs were produced; this stands for “not a number”. Also notice the number sign #, which means
comment. Everything typed on the same line after the # will be ignored by R. There is also a continuation
prompt + which occurs if you press Enter before a statement is complete. For example, if you forget to close
the parentheses or a command you may get something like the following:

ii

http://www.sciviews.org/_rgui/

> sqrt(27+32
+
+

To exit out of the continuation prompt, you can either complete the command - by entering a) in the above
example - or you may press the Esc key.

Some other fuctions that will be of use are abs() for absolute value, log() for the natural logarithm, exp()
for the exponential function, factorial() for computing permutations, and choose() for binomial coefficients.

Assignment. This is useful for storing values to be used later.

> y = 5 # stores the value 5 in y
> y
[1] 5

> y <- 5 # also stores the value 5 in y

> 7 -> z # stores the value 7 in z

You do not have to use the <- notation to store things; the equal sign = works just as well. I will use both
symbols interchangeably.

Acceptable variable names. You can use letters, numbers, dots “.”, or underscore “_” characters. You
cannot use mathematical operators, and a leading dot may not be followed by a number. Examples: x, x1, y32,
x.variable, x_variable.

Using c() to enter data vectors. If you would like to enter the data 74,31,95,61,76,34,23,54,96 into
R, you may create a data vector with the c() function (short for concatenate).

> fred = c(74, 31, 95, 61, 76, 34, 23, 54, 96)

> fred
[1] 74 31 95 61 76 34 23 54 96

The vector fred has 9 entries. We can access individual components with bracket [] notation:

> fred[3]
[1] 95

> fred[2:4]
[1] 31 95 61

> fred[c(1, 3, 5, 7)]
[1] 74 95 76 23

If you would like to reset the variable fred, you can do it by typing fred = c().
Using scan() to enter numeric data vectors. If you would like to enter the data 76 34 23 54 96 into a

vector x, perhaps the quickest way would be to use the scan() function:

> x=scan()
1: 76
2: 34
3: 23
4: 54
5: 96
6:
Read 5 items

This method is best suited for use with small data sets and only works if the data are numeric. Notice
that entering an empty line stops the scan. Another use of this feature is when you have a long list of numbers
(separated by spaces or on different lines) already typed somewhere else, say in a text file. To enter all the data
in one fell swoop, highlight and copy the list of numbers to the Clipboard with Edit → Copy, next type the
x=scan() command in the R console, and paste the numbers at the 1: prompt with Edit → Paste. All of the
numbers will automatically be entered into the vector x.

Data vectors have type. There are numeric, character, and logical type vectors. If you mix and match
then usually it will be character. Notice that characters can be identified with either single or double quotes.

iii

> simpsons = c("Homer", ’Marge’, “Bart", "Lisa", "Maggie")

> names(simpsons) = c("dad", "mom", "son", "daughter 1", "daughter 2")

> simpsons
dad mom son daughter 1 daughter 2

"Homer" "Marge" "Bart" "Lisa" "Maggie"

Here is an example of a logical vector:

> x = c(5,7)

> v = (x<6)

> v
[1] TRUE FALSE

Applying functions to a data vector. Once we have stored a data vector then we can evaluate functions
on it.

> fred
[1] 74 31 95 61 76 34 23 54 96

> sum(fred)
[1] 544

> length(fred)
[1] 9

> sum(fred)/length(fred)
[1] 60.44444

> mean(fred) # sample mean, should be the same answer
[1] 60.44444

> sd(fred) # sample standard deviation
[1] 27.14365

Other popular functions for vectors are range(), min(), max(), sort(), and cumsum().
Vectorizing functions. Arithmetic in R is almost always done element-wise, also known as vectorizing

functions. Some examples follow.

> fred.2 = c(4,5,3,6,4,6,7,3,1)

> fred+fred.2
[1] 78 36 98 67 80 40 30 57 97

> fred-fred.2
[1] 70 26 92 55 72 28 16 51 95

> fred - mean(fred)
[1] 13.5555556 -29.4444444 34.5555556 0.5555556 15.55556 -26.44444
[7] -37.4444444 -6.4444444 35.5555556

The operations + and - are performed element-wise. Notice in the last vector that mean(fred) was subtracted
from each entry, in turn. This is also known as data recycling. Other popular vectorizing functions are sin(),
cos(), exp(), log(), and sqrt().

4 Getting Help
When you are using R, it will not take long before you find yourself needing help. Fortunately, R has extensive
help resources and you should immediately become familiar with them. Begin by clicking Help on the console.
The following options are available.

• Console: gives useful shortcuts, for instance, Ctrl+L, to clear the R console screen.

• FAQ on R: frequently asked questions concerning general R operation.

• FAQ on R for Windows: frequently asked questions about R, tailored to the Windows operating system.

iv

• Manuals: technical manuals about all features of the R system including installation, the complete
language definition, and add-on packages.

• R functions (text). . . : use this if you know the exact name of the function you want to know more
about, for example, mean or plot. Typing mean in the window is equivalent to typing help(“mean”) at
the command line, or more simply, ?mean.

• Html Help: use this to browse the manuals with point-and-click links. It also has a Search Engine
& Keywords for searching the help page titles, with point-and-click links for the search results. This is
possibly the best help method for beginners.

• Search help. . . : use this if you do not know the exact name of the function of interest. For example,
you may enter plo and a text window will return listing help files with an alias, concept, or title matching
‘plo’ using regular expression matching; it is equivalent to typing help.search(“plo”) at the command
line. The advantage is that you do not need to know the exact name of the function; the disadvantage is
that you cannot point-and-click the results. Therefore, one may wish to use the Html Help search engine
instead.

• search.r-project.org. . . : this will search for words in help lists and archives of the R Project. It can be
very useful for finding other questions that useRs have asked.

• Apropos. . . : use this for more sophisticated partial name matching of functions. Try ?apropos for
details.

Note also example(). This initiates the running of examples, if available, of the use of the function specified by
the argument.

5 Other tips
It is unnecessary to retype commands repeatedly, since R remembers what you have entered on the command
line. To cycle through the previous commands, just push the ↑ (up arrow) key.

Missing values in R are denoted by NA. Operations on data vector NA values treat them as if the values can’t
be found. This means adding (as well as subtracting and all of the other mathematical operations) a number
to NA results in NA.

To find out what all variables are in the current work environment, use the commands ls() or objects().
These list all available objects in the workspace. If you wish to remove one or more variables, use remove(var1,
var2), and to remove all of them use rm(list=ls()).

6 Some References
• Dalgaard, P. (2002). Introductory Statistics with R. Springer.

• Everitt, B. (2005). An R and S-Plus Companion to Multivariate Analysis. Springer.

• Heiberger, R. and Holland, B. (2004). Statistical Analysis and Data Display. An Intermediate Course
with Examples in S-Plus, R, and SAS. Springer.

• Maindonald, J. and Braun, J. (2003). Data Analysis and Graphics Using R: an Example Based Approach.
Cambridge University Press.

• Venables, W. and Smith, D. (2005). An Introduction to R. http://www.r-project.org/Manuals.

• Verzani, J. (2005). Using R for Introductory Statistics. Chapman and Hall.

v

http://www.r-project.org/Manuals

	1 Installing R and the IPSUR Package
	2 Communicating with R
	3 A First Session: Using R as a calculator
	4 Getting Help
	5 Other tips
	6 Some References

