STAT 3743: Probability and Statistics

G. Jay Kerns, Youngstown State University \qquad

Fall 2010
\qquad
\qquad
\qquad
\qquad
G. Jay Kerns, Youngstown State University
\qquad
G. Jay Kerns, Youngstown State University Probability and Statistics

What are statistics?

Notes
L. status \longrightarrow a "standing", or "condition"

- 1700's Germans: "Statistik" \rightsquigarrow Political Science
- each datum \longrightarrow statistic
- all data \longrightarrow statistics
\qquad
\qquad
\qquad
\qquad

Statistics (loosely): decision making under uncertainty \qquad

Definition.

Statistics is that branch of knowledge which deals with the multiplicity of data, its
(1) collection, \qquad
(2) analysis, and \qquad
(3) interpretation ${ }^{\text {a }}$ \qquad
${ }^{\text {a }}$ Information-Statistical Data Mining: Warehouse Integration with \qquad Examples of Oracle Basics (The Springer International Series in Engineering and Computer Science) by Bon K. Sy and Arjun K. Gupta \qquad (Nov 30, 2003)
G. Jay Kerns, Youngstown State University

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure: Two types of experiments

Definition.

The sample space is the set of all possible outcomes. It is denoted by S.
\qquad

Random experiments

- outcomes associated $\mathrm{w} /$ random experiments called random variables: X, Y, Z, etc.
- observed values: x, y, z

Notes

Do a Random Experiment:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad

Note
Make a Frequency Histogram: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

- In general, do random experiment n times
- For outcome x, get frequency f_{x}
- Turns out, f_{x} can be crazy for small values of n
- However,

$$
\lim _{n \rightarrow \infty} \frac{f_{x}}{n}=p(x)
$$

where $p(x)$ is the "probability of outcome x "

- p is the probability mass function (PMF) of X,

$$
p_{X}(x)=\mathbb{P}(X=x), \quad \text { for } x \in S
$$

\qquad
\qquad
G. Jay Kerns, Youngstown State University Probability and Statistics

Random variable characteristics

Let X be a r.v. taking values in the sample space

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}
$$

Notes
\qquad
\qquad
\qquad
Then

$$
p\left(x_{i}\right)=\mathbb{P}\left(X=x_{i}\right), \quad i=1,2, \ldots, k
$$

\qquad
\qquad
And

$$
\begin{aligned}
\sum_{i=1}^{k} p\left(x_{i}\right) & =p\left(x_{1}\right)+p\left(x_{2}\right)+\cdots+p\left(x_{k}\right) \\
& =1
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

The mean of the r.v. X is

$$
\begin{aligned}
\mu & =\sum_{i=1}^{k} x_{i} p\left(x_{i}\right) \\
& =x_{1} p\left(x_{1}\right)+x_{2} p\left(x_{2}\right)+\cdots+x_{k} p\left(x_{k}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Remarks:

- the mean is a center or average value of X
\qquad
- μ can be any number or decimal
\qquad
- μ is the "first moment about the origin" \qquad
G. Jay Kerns, Youngstown State University Probability and Statistics
\qquad

Notes

Example
Pick a chip out of an urn. The urn has \qquad chips labeled " 1 ",
\qquad
\qquad
\qquad labeled " 2 " and \qquad labeled " 3 ". \qquad
$X=$ number listed on chip \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^1]The variance of the r.v. X is \qquad

$$
\sigma^{2}=\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
G. Jay Kerns, Youngstown State University Probability and Statistics

Random variable characteristics

- mean measures CENTER, variance measures SPREAD
- $\sigma^{2} \geq 0$
- $\sigma=\sqrt{\sigma^{2}}$ is the standard deviation

Shortcut:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Other characteristics

Do random experiment n times, observe $x_{1}, x_{2}, \ldots, x_{n}$.
Definition.
The empirical distribution puts mass $1 / n$ on each of the
\qquad
values $x_{1}, x_{2}, \ldots, x_{n}$.
\qquad
The mean of the EDstn: \qquad
\qquad
\qquad
\qquad

\qquad
G. Jay Kerns, Youngstown State University Probability and Statistics
\qquad

Other characteristics

Variance of the Empirical Distribution:

$$
v=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \frac{1}{n}
$$

Sample variance:

$$
v=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Sample standard deviation:
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
s=\sqrt{s^{2}}
$$

Examples of random variables

Notes
Write down a bunch of random variables: \qquad
G. Jay Kerns, Youngstown State University

[^0]: G. Jay Kerns, Youngstown State University

[^1]: G. Jay Kerns, Youngstown State University

