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Probability

Random experiment: outcome not known in advance

Sample space: set of all possible outcomes (S)

Probability related to Set Theory

subsets A, B, C , etc. are events

∅ represents the empty set

How to do it with R

> library(prob)

> S <- data.frame(lands = c("down",

+ "up", "side"))

> S <- tosscoin(3)
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Set Theory review

Name Denoted Defined by elements R syntax

Union A ∪ B in A or B or both union(A, B)

Intersection A ∩ B in both A and B intersect (A, B)

Difference A\B in A but not in B setdiff (A, B)

Complement Ac in S but not in A setdiff (S, A)

Table: Set operations
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Algebra of sets

A ∪ ∅ = A, A ∩ ∅ = ∅, A ∪ S = S , A ∩ S = A, . . .

Commutative property:

A ∪ B = B ∪ A, A ∩ B = B ∩ A

Associative property:

(A∪B)∪C = A∪ (B ∪C ), (A∩B)∩C = A∩ (B ∩C )

Distributive property:

A∪(B∩C ) = (A∪B)∩(A∪B), A∩(B∪C ) = (A∩B)∪(A∩B)
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Example

Write “neither A nor B occurs”

Example

“A occurs, but not B”

Example

“A or B occurs, but not both”
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Definition

The sets A and B are mutually exclusive or disjoint if

A ∩ B = Ø. We say A1, A2, . . . , Ak are m.e. if Ai ∩ Aj = Ø

when i 6= j .

Have all kinds of events, want to know chance of an

event A

The probability of A is the proportion of times that A

occurs in repeated trials of a random experiment as the

number of trials increases without bound.
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Axioms for Probability

Axiom 1.

IP(A) ≥ 0 for any event A ⊂ S .

Axiom 2.

IP(S) = 1.

Axiom 3.

If the events A1, A2, A3. . . are disjoint then

IP

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

IP(Ai).
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Properties of probability

Property 1.

IP(Ac) = 1− IP(A)

Property 2.

IP(∅) = 0

Property 3.

If A ⊂ B , then IP(A) ≤ IP(B)
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Properties of probability

Property 4.

0 ≤ IP(A) ≤ 1

Property 5. (General Addition Rule)

IP(A ∪ B) = IP(A) + IP(B)− IP(A ∩ B)
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Properties of probability

What about 3 events?

Corollary. (Boole’s Inequality)

IP(A ∪ B) ≤ IP(A) + IP(B)
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How do we assign probabilities?

Finite sample space

S = {e1, e2, . . . , eN}

Need

1 pi ≥ 0

2 IP(S) =
∑N

i=1 pi = 1

Equally likely outcomes
means

p1 = p2 = · · · = pN = p =⇒ p = 1/N
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How do we assign probabilities?

Given A ⊂ S , write

A = {ai1 , ai2 , . . . , aik}

Then

IP(A) = IP(ai1) + IP(ai2) + · · ·+ IP(aik ),

=
1

N
+

1

N
+ · · ·+ 1

N
,

=
k

N
=

#(A)

#(S)
.
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Examples

Example 1.

Toss a coin

Example 2.

Toss 2 coins

IP(at least 1 head) =

IP(no heads) =
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Examples

Example 3.

Three child family

IP(exactly 2 boys) =

IP(at most 2 boys) =

Example 4.

Roll a die
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Examples

Example 5.

Deck of cards. Select 1 card at random.

A −→ {Ace} IP(A) =

B −→ {Clubs} IP(B) =

IP(A ∩ B) =

IP(A ∪ B) =

G. Jay Kerns, Youngstown State University Probability and Statistics

Examples

Example 6.

Poker hand −→ STUD poker

S = { }

IP(Royal Flush) =
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How to count

Multiplication Principle.

An experiment has two steps. First step can be done in n1

ways, Second step can be done in n2 ways. The whole

experiment may be done in

n1n2 ways

If it has k steps which can be done in n1, n2, . . . , nk ways,

then the whole experiment may be done in

n1n2 · · · nk ways
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Examples

Examples.

1 Want to eat a pizza

2 Toss 6 coins

3 Roll 112 dice

What about IP(70 sixes)?
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How to count

Theorem.

The number of ways to select an ordered sample of k subjects

from a population that has n distinguishable members is

nk if sampling is done with replacement,

n(n − 1)(n − 2) · · · (n − k + 1) if sampling is done

without replacement.

Here, ORDER is IMPORTANT
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Examples

Examples.

1 Flip a coin 7 times

2 20 students, select president, vice-president, treasurer

3 Rent 5 movies. Want to watch 3 movies on the first night.
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How to count

Theorem.

The number of ways to select an unordered sample of k

subjects from a population that has n distinguishable members

is

(n − 1 + k)!/[(n − 1)!k!] if sampling is done with

replacement,

n!/[k!(n − k)!] if sampling is done without replacement.

n!/[k!(n − k)!] is a binomial coefficient “n choose k”(
n

k

)
=

n!

k!(n − k)!
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More about binomial coefficients
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Birthday problem

n people in a class

365 days/year, equally likely

IP(at least two have same birthday)

1− #(A)

#(S)
=
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Figure: The birthday problem
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Poker hands

52 cards −→ 5 card hand

S = {all possible 5 card hands}

(should shuffle times???)

A = Royal Flush = {A, K , Q, J , all same suit}

B = {Four of a kind}
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Conditional probability

52 cards −→ draw 2 cards (without replacement)

A = {1st card drawn is Ace}

B = {2nd card drawn is Ace}

Then

IP(A) =

IP(B) =
{
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Conditional probability

Definition.

The conditional probability of B given that the event A

occurred is

IP(B|A) =
IP(A ∩ B)

IP(A)
, if IP(A) > 0.
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Conditional probability

Example

Toss a coin twice.

A = {a head occurs}

B = {a head and tail occurs}

IP(A|B) =

IP(B|A) =

G. Jay Kerns, Youngstown State University Probability and Statistics

Notes

Notes



Conditional probability

Example

Toss a die twice.

A = {outcomes match}

B = {sum of outcomes ≥ 8}

IP(A) =

IP(B) =

IP(A ∩ B) =

IP(A|B) =

IP(B|A) =
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Properties

Note.

For any fixed event A with IP(A) > 0,

1 IP(B|A) ≥ 0, for all events B ⊂ S ,

2 IP(S |A) = 1, and

3 If B1, B2, B3,. . . are disjoint events, then

IP

(
∞⋃
k=1

Bk

∣∣∣∣∣A

)
=

∞∑
k=1

IP(Bk |A).
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More properties

Note.

For any events A, B , and C with IP(A) > 0,

1 IP(Bc |A) = 1− IP(B|A).

2 If B ⊂ C then IP(B|A) ≤ IP(C |A).

3 IP[(B ∪ C )|A] = IP(B|A) + IP(C |A)− IP[(B ∩ C |A)].

4 For any two events A and B ,

IP(A ∩ B) = IP(A) IP(B|A).

For 3 events:
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Conditional probability

Example.

Recall the aces problem

A = {1st card drawn is Ace}

B = {2nd card drawn is Ace}

IP(both Aces) =
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Conditional probability

Example.

Urn with 10 balls, 7 red and 3 green. Select 3 balls

successively from the urn.

A = {1st ball red}

B = {2nd ball red}

C = {3rd ball red}

IP(all red) =

G. Jay Kerns, Youngstown State University Probability and Statistics

Good example

Two urns. First: 5 red, 3 green. Second: 2 red, 6 green

1 ball transferred. Select 1 ball.

IP(red) =
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What if you don’t look?

IP(second card is Ace) =
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Good example (continued)

IP(red) =
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What if you don’t look?

IP(second card is Ace) =
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Independence

Example.

Toss two coins

IP(1st H) =

IP(2nd H) =

IP(both H) =

IP(2nd H | 1st H) =
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Independence

Definition.

Events A and B are independent if

IP(A ∩ B) = IP(A) IP(B),

otherwise they are dependent.

Intuition:

IP(A|B) = IP(A) when A, B independent
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Properties

Proposition.

If A and B are independent then

A and Bc are independent,

Ac and B are independent,

Ac and Bc are independent.

What about 3 or more events?
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Mutual independence

Definition.

A, B and C are mutually independent if

IP(A ∩ B) = IP(A) IP(B),

IP(A ∩ C ) = IP(A) IP(C ),

IP(B ∩ C ) = IP(B) IP(C ),

and

IP(A ∩ B ∩ C ) = IP(A) IP(B) IP(C ).
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Mutual independence

Example.

Toss 100 coins.

IP(at least 1 head) =
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Mutual independence

Remark.

Pairwise independence does NOT imply mutual.

Examples.

1 Toss coins, roll dice, etc.

2 Draw two cards without replacement

3 Space shuttle. 4 computers, A, B , C , D

IP(fail) = 0.10
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Space shuttle (cont.)

Scheme: computers in series.

If computers independent,

IP(at least one computer works)
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Bayes’ Rule

Theorem.

Let B1, B2, . . . , Bn be mutually exclusive and exhaustive and

let A be an event with IP(A) > 0. Then

IP(Bk |A) =
IP(Bk) IP(A|Bk)∑n
i=1 IP(Bi) IP(A|Bi)

, k = 1, 2, . . . , n.
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Bayes’ Rule (intuition)
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Bayes’ Rule: what does it mean?

Given (or know) a priori probabilities IP(Bk). Collect some

data, which is A.

How to update IP(Bk) to IP(Bk |A)?
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Example: misfiling assistants

Moe, Larry, and Curly

Moe Larry Curly

Workload 60% 30% 10%

Moe Larry Curly

Prior IP(M) = IP(L) = IP(C ) =
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Misfiling assistants (cont.)

Moe Larry Curly

Misfile Rate 0.003 0.007 0.010

Moe Larry Curly

Posterior IP(M |A) ≈ IP(L|A) ≈ IP(C |A) ≈
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Random variables

Experiment E

Sample space S

Calculate number X

Definition.

A random variable X is a function X : S → R that associates

to each outcome ω ∈ S exactly one number X (ω) = x . The

support of X is the set of X ’s values:

SX = {x : X (ω) = x , ω ∈ S}
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Random variables

Example.

Toss a coin three times

Example.

Toss a coin until tails

Example.

Toss a coin, measure time until lands
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Notes

Notes


