STAT 3743: Probability and Statistics

G. Jay Kerns, Youngstown State University

Fall 2010

(ロトイラトイミトイミト ミーグへで G. Jay Kerns, Youngstown State University Probability and Statistics

Probability

- Random experiment: outcome not known in advance
- Sample space: set of all possible outcomes (S)
- Probability related to Set Theory
 - subsets A, B, C, etc. are events
 - ullet \emptyset represents the empty set

How to do it with R

```
> library(prob)
> S <- data.frame(lands = c("down",
+ "up", "side"))
> S <- tosscoin(3)

G. Jay Kerns, Youngstown State University Probability and Statistics
```

Votes			
Votes			
Votes			
Votes			
Notes			
Votes			
Notes			
Notes			

NI

Set Theory review

Name	Denoted	Defined by elements	R syntax
Union	$A \cup B$	in A or B or both	union(A, B)
Intersection	$A \cap B$	in both A and B	intersect (A, B)
Difference	$A \backslash B$	in A but not in B	setdiff (A, B)
Complement	A^c	in S but not in A	setdiff (S, A)

Table: Set operations

4 D > 4 B > 4 E > 4 E > E 9 Q C

Notes

Notes

G. Jay Kerns, Youngstown State University

Probability and Statistics

Algebra of sets

$$\bullet A \cup \emptyset = A$$
, $A \cap \emptyset = \emptyset$, $A \cup S = S$, $A \cap S = A$, ...

• Commutative property:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

• Associative property:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

• Distributive property:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup B), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$$

Example

Write "neither A nor B occurs"

Example

"A occurs, but not B"

Example

"A or B occurs, but not both"

4□ ト 4 回 ト 4 豆 ト 4 豆 ト 9 Q C

G. Jay Kerns, Youngstown State University

Probability and Statistics

Definition

The sets A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$. We say A_1, A_2, \ldots, A_k are m.e. if $A_i \cap A_j = \emptyset$ when $i \neq j$.

- ullet Have all kinds of events, want to know chance of an event A
- The probability of *A* is the proportion of times that *A* occurs in repeated trials of a random experiment as the number of trials increases without bound.

Notes		

Notes

Axioms for Probability

Axiom 1.

 $\mathbb{P}(A) \geq 0$ for any event $A \subset S$.

Axiom 2.

 $\mathbb{P}(S) = 1.$

Axiom 3.

If the events A_1 , A_2 , A_3 ... are disjoint then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i}).$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Properties of probability

Property 1.

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

Property 2.

$$\mathbb{P}(\emptyset) = 0$$

Property 3.

If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Votes		
lotes		

Properties of probability

Property 4.

 $0 \leq \mathbb{P}(A) \leq 1$

Property 5. (General Addition Rule)

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Properties of probability

What about 3 events?

Corollary. (Boole's Inequality)

$$\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$$

Notes	
Notes	
Notes	

How do we assign probabilities?

Finite sample space

$$S = \{e_1, e_2, \ldots, e_N\}$$

Need

- ① $p_i \ge 0$
- **2** $\mathbb{P}(S) = \sum_{i=1}^{N} p_i = 1$

Equally likely outcomes

means

$$p_1 = p_2 = \cdots = p_N = p \implies p = 1/N$$

G. Jay Kerns, Youngstown State University

Probability and Statistic

How do we assign probabilities?

Given $A \subset S$, write

$$A = \{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}$$

Then

$$\mathbb{P}(A) = \mathbb{P}(a_{i_1}) + \mathbb{P}(a_{i_2}) + \cdots + \mathbb{P}(a_{i_k}),$$

$$= \frac{1}{N} + \frac{1}{N} + \cdots + \frac{1}{N},$$

$$= \frac{k}{N} = \frac{\#(A)}{\#(S)}.$$

Notes			
_			
_			
Notes			

Examples

Example 1.

Toss a coin

Example 2.

Toss 2 coins

IP(at least 1 head) =

IP(no heads) =

G. Jay Kerns, Youngstown State University

Probability and Statistics

Examples

Example 3.

Three child family

IP(exactly 2 boys) =

 $\mathbb{P}(\text{at most 2 boys}) =$

Example 4.

Roll a die

Notes			
Votes			
Votes			
Notes			
Votes			
Notes			

Examples

Example 5.

Deck of cards. Select 1 card at random.

$$A \longrightarrow \{Ace\}$$
 $\mathbb{P}(A) =$

$$B \longrightarrow \{\mathsf{Clubs}\}$$
 $\mathbb{P}(B) =$

$$\mathbb{P}(A \cap B) =$$

$$\mathbb{P}(A \cup B) =$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Examples

Example 6.

Poker hand \longrightarrow STUD poker

IP(Royal Flush) =

Notes

Notes

How to count

Multiplication Principle.

An experiment has two steps. First step can be done in n_1 ways, Second step can be done in n_2 ways. The whole experiment may be done in

$$n_1 n_2$$
 ways

If it has k steps which can be done in n_1, n_2, \ldots, n_k ways, then the whole experiment may be done in

$$n_1 n_2 \cdots n_k$$
 ways

G. Jay Kerns, Youngstown State University

← □ ▷ ← ② ▷ ← 볼 ▷ ← 볼 ▷ ♥ ♀ ○Probability and Statistics

Examples

Examples.

- Want to eat a pizza
- 2 Toss 6 coins
- 3 Roll 112 dice

What about $\mathbb{P}(70 \text{ sixes})$?

				_
Votes				
Notes				
Votes				
Votes				
Notes				
Votes				
Notes				
Votes				
Notes				

How to count

Theorem.

The number of ways to select an *ordered* sample of k subjects from a population that has n distinguishable members is

- n^k if sampling is done with replacement,
- $n(n-1)(n-2)\cdots(n-k+1)$ if sampling is done without replacement.

Here, ORDER is IMPORTANT

4 ロ ト 4 固 ト 4 差 ト 4 差 ト 2 9 Q Q

G. Jay Kerns, Youngstown State University

Probability and Statistics

Examples

Examples.

- Flip a coin 7 times
- 20 students, select president, vice-president, treasurer
- 3 Rent 5 movies. Want to watch 3 movies on the first night.

Notes		
Notes		
Votes		
Notes		
Votes		
Votes		
Notes		
Votes		
Notes		
Votes		
Votes		
Notes		

Notes

How to count

Theorem.

The number of ways to select an *unordered* sample of k subjects from a population that has n distinguishable members is

- (n-1+k)!/[(n-1)!k!] if sampling is done with replacement,
- n!/[k!(n-k)!] if sampling is done without replacement.

n!/[k!(n-k)!] is a binomial coefficient "n choose k"

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

More about binomial coefficients

Notes			
Notes			
-			

Birthday problem

- n people in a class
- 365 days/year, equally likely
- IP(at least two have same birthday)

$$1-\frac{\#(A)}{\#(S)}=$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

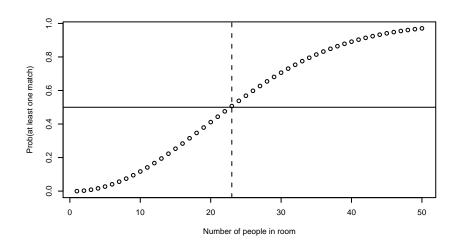


Figure: The birthday problem

4	-	4 [-	4	=	-	4	=	l-	=	4)	Q	(3

Notes			
Notes			
			_
			_

Poker hands

 $52 \text{ cards} \longrightarrow 5 \text{ card hand}$

 $S = \{\text{all possible 5 card hands}\}\$

(should shuffle times???)

 $A = \text{Royal Flush} = \{A, K, Q, J, \text{ all same suit}\}$

 $B = \{ Four of a kind \}$

◆□▶ ◆□▶ ◆ 壹 ▶ ○ 壹 ● 9 Q @

G. Jay Kerns, Youngstown State University

Probability and Statistics

Conditional probability

52 cards — draw 2 cards (without replacement)

 $A = \{1st card drawn is Ace\}$

 $B = \{2 \text{nd card drawn is Ace}\}\$

Then

$$\mathbb{P}(A) =$$

$$\mathbb{P}(B) = \Big\{$$

lotes				
lotes				
lotes				
lotes				
Jotes				
lotes				
Jotes				
lotes				
Jotes				
Jotes				
Jotes				
lotes				
Votes				

Conditional probability

Definition.

The conditional probability of B given that the event A occurred is

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}, \quad \text{if } \mathbb{P}(A) > 0.$$

4 D > 4 B > 4 E > 4 E > 9 Q C

G. Jay Kerns, Youngstown State University

Probability and Statistics

Conditional probability

Example

Toss a coin twice.

$$A = \{a \text{ head occurs}\}$$

 $B = \{a \text{ head and tail occurs}\}$

•
$$\mathbb{P}(A|B) =$$

•
$$\mathbb{P}(B|A) =$$

Notes			

Notes

Conditional probability

Example

Toss a die twice.

$$A = \{ \text{outcomes match} \}$$

$$B = \{\text{sum of outcomes} \ge 8\}$$

•
$$\mathbb{P}(A \cap B) =$$

•
$$\mathbb{P}(A|B) =$$

•
$$\mathbb{P}(B|A) =$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Properties

Note.

For any fixed event A with $\mathbb{P}(A) > 0$,

- ① $\mathbb{P}(B|A) \geq 0$, for all events $B \subset S$,
- ② P(S|A) = 1, and
- 3 If B_1 , B_2 , B_3 ,... are disjoint events, then

$$\mathbb{P}\left(\left.\bigcup_{k=1}^{\infty}B_{k}\;\middle|\;A
ight)=\sum_{k=1}^{\infty}\mathbb{P}(B_{k}|A).$$

Notes			
Notes			

Note.

For any events A, B, and C with IP(A) > 0,

- ① $\mathbb{P}(B^c|A) = 1 \mathbb{P}(B|A)$.
- **3** $\mathbb{P}[(B \cup C)|A] = \mathbb{P}(B|A) + \mathbb{P}(C|A) \mathbb{P}[(B \cap C|A)].$
- \bullet For any two events A and B,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B|A).$$

For 3 events:

4 D > 4 B > 4 E > 4 E > 9 Q

G. Jay Kerns, Youngstown State University

Probability and Statistics

Conditional probability

Example.

Recall the aces problem

 $A = \{1st card drawn is Ace\}$

 $B = \{2 \text{nd card drawn is Ace}\}\$

• IP(both Aces) =

lotes			
lotes			

Conditional probability

Example.

Urn with 10 balls, 7 red and 3 green. Select 3 balls successively from the urn.

$$A = \{1st ball red\}$$

$$B = \{2nd ball red\}$$

$$C = \{3rd ball red\}$$

Probability and Statistics

Good example

Two urns. First: 5 red, 3 green. Second: 2 red, 6 green 1 ball transferred. Select 1 ball.

$$\mathbb{P}(\mathsf{red}) =$$

otes	
otes	

What if you don't look?

IP(second card is Ace) =

G. Jay Kerns, Youngstown State University

 ←□ト
 □ト
 □ □
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□
 □□

Notes

Notes

Good example (continued)

 $\mathbb{P}(\mathsf{red}) =$

	4 D > 4 🗗)	₽	900
Probability and	Statistics		

What if you don't look?

IP(second card is Ace) =

4 D > 4 B > 4 B > 4 B > 9 Q @

G. Jay Kerns, Youngstown State University

Probability and Statistics

Independence

Example.

Toss two coins

- IP(1st H) =
- $\mathbb{P}(2nd H) =$
- $\mathbb{P}(\text{both } H) =$

 $\mathbb{P}(2nd H | 1st H) =$

Notes				
Notes				

Independence

Definition.

Events A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B),$$

otherwise they are dependent.

Intuition:

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$
 when A, B independent

Probability and Statistics

G. Jay Kerns, Youngstown State University

Properties

Proposition.

If A and B are independent then

- \bullet A and B^c are independent,
- \bullet A^c and B are independent,
- \bullet A^c and B^c are independent.

What about 3 or more events?

母▶ ◆草▶ ◆草▶ 草 めぐぐ	

Notes

Notes

Mutual independence

Definition.

A, B and C are mutually independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B),$$

$$\mathbb{P}(A \cap C) = \mathbb{P}(A) \mathbb{P}(C),$$

$$\mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C),$$

and

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\,\mathbb{P}(B)\,\mathbb{P}(C).$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Mutual independence

Example.

Toss 100 coins.

Notes			
lotes			

Mutual independence

Remark.

Pairwise independence does NOT imply mutual.

Examples.

- 1 Toss coins, roll dice, etc.
- 2 Draw two cards without replacement
- 3 Space shuttle. 4 computers, A, B, C, D

$$IP(fail) = 0.10$$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Space shuttle (cont.)

Scheme: computers in series.

If computers independent,

Votes			

Bayes' Rule

Theorem.

Let B_1, B_2, \ldots, B_n be mutually exclusive and exhaustive and let A be an event with $\mathbb{P}(A) > 0$. Then

$$\mathbb{P}(B_k|A) = \frac{\mathbb{P}(B_k)\,\mathbb{P}(A|B_k)}{\sum_{i=1}^n\mathbb{P}(B_i)\,\mathbb{P}(A|B_i)}, \quad k = 1, 2, \dots, n.$$

Notes

G. Jay Kerns, Youngstown State University

Probability and Statistics

Bayes' Rule (intuition)

Notes	
Notes	

Bayes' Rule: what does it mean?

Given (or know) a priori probabilities $\mathbb{P}(B_k)$. Collect some data, which is A.

How to update $\mathbb{P}(B_k)$ to $\mathbb{P}(B_k|A)$?

Example: misfiling assistants

Moe, Larry, and Curly

Notes		
Votes		

Misfiling assistants (cont.)

	Moe	Larry	Curly
Misfile Rate	0.003	0.007	0.010

	Moe	Larry	Curly
Posterior	$\mathbb{P}(M A) \approx$	$\mathbb{P}(L A) pprox$	$\mathbb{P}(C A) \approx$

G. Jay Kerns, Youngstown State University

Probability and Statistics

Random variables

- Experiment *E*
- Sample space S
- \bullet Calculate number X

Definition.

A random variable X is a function $X:S\to\mathbb{R}$ that associates to each outcome $\omega\in S$ exactly one number $X(\omega)=x$. The support of X is the set of X's values:

$$S_X = \{x : X(\omega) = x, \ \omega \in S\}$$

Votes			

Notes			

Random variables

Example.

Toss a coin three times

Example.

Toss a coin until tails

Example.

Toss a coin, measure time until lands

G. Jay Kerns, Youngstown State University

Probability and Statistics

Notes			
Notes			
-			