STAT 3743: Probability and Statistics

G. Jay Kerns, Youngstown State University

Fall 2010

Probability

- Random experiment: outcome not known in advance
- Sample space: set of all possible outcomes (S)
- Probability related to Set Theory
- subsets A, B, C, etc. are events
- \emptyset represents the empty set

How to do it with R

> library(prob)
> S <- data.frame(lands = c("down",

+ "up", "side"))
> S <- tosscoin(3)

Set Theory review

Name	Denoted	Defined by elements	R syntax
Union	$A \cup B$	in A or B or both	union(A, B)
Intersection	$A \cap B$	in both A and B	intersect (A, B)
Difference	$A \backslash B$	in A but not in B	$\operatorname{setdiff}(\mathrm{~A}, \mathrm{~B})$
Complement	A^{c}	in S but not in A	$\operatorname{setdiff}(\mathrm{~S}, \mathrm{~A})$

Table: Set operations

Algebra of sets

- $A \cup \emptyset=A, \quad A \cap \emptyset=\emptyset, A \cup S=S, \quad A \cap S=A, \ldots$
- Commutative property:

$$
A \cup B=B \cup A, \quad A \cap B=B \cap A
$$

- Associative property:
$(A \cup B) \cup C=A \cup(B \cup C), \quad(A \cap B) \cap C=A \cap(B \cap C)$
- Distributive property:
$A \cup(B \cap C)=(A \cup B) \cap(A \cup B), \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap B)$

Example

Write "neither A nor B occurs"

Example

" A occurs, but not B "

Example

" A or B occurs, but not both"

Definition
The sets A and B are mutually exclusive or disjoint if $A \cap B=\emptyset$. We say $A_{1}, A_{2}, \ldots, A_{k}$ are m.e. if $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$.

- Have all kinds of events, want to know chance of an event A
- The probability of A is the proportion of times that A occurs in repeated trials of a random experiment as the number of trials increases without bound.

Axioms for Probability

Axiom 1.
$\mathbb{P}(A) \geq 0$ for any event $A \subset S$.

Axiom 2.
$\operatorname{PP}(S)=1$.

Axiom 3.
If the events $A_{1}, A_{2}, A_{3} \ldots$ are disjoint then

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

Properties of probability

Property 1.
$\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$

Property 2.
$\mathbb{P}(\emptyset)=0$

Property 3.

If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Properties of probability

Property 4.
$0 \leq \mathbb{P}(A) \leq 1$

Property 5. (General Addition Rule)
$\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

What about 3 events?

Corollary. (Boole's Inequality)
$\mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)$

How do we assign probabilities?

Finite sample space

$$
S=\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}
$$

Need
(1) $p_{i} \geq 0$
(2) $\operatorname{PP}(S)=\sum_{i=1}^{N} p_{i}=1$

Equally likely outcomes

 means$$
p_{1}=p_{2}=\cdots=p_{N}=p \quad \Longrightarrow \quad p=1 / N
$$

How do we assign probabilities?

Given $A \subset S$, write

$$
A=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}
$$

Then

$$
\begin{aligned}
\mathbb{P}(A) & =\mathbb{P}\left(a_{i_{1}}\right)+\mathbb{P}\left(a_{i_{2}}\right)+\cdots+\mathbb{P}\left(a_{i_{k}}\right) \\
& =\frac{1}{N}+\frac{1}{N}+\cdots+\frac{1}{N} \\
& =\frac{k}{N}=\frac{\#(A)}{\#(S)}
\end{aligned}
$$

Examples

Example 1.
 Toss a coin

Example 2.

Toss 2 coins
$\mathbb{P}($ at least 1 head $)=$
$\mathbb{P}($ no heads $)=$

Examples

Example 3.
Three child family
$\mathbb{P}($ exactly 2 boys $)=$
$\mathbb{P}($ at most 2 boys $)=$

Example 4.

Roll a die

Examples

Example 5.
Deck of cards. Select 1 card at random.
$A \longrightarrow\{$ Ace $\} \quad \mathbb{P}(A)=$
$B \longrightarrow\{$ Clubs $\} \quad \mathbb{P}(B)=$
$\mathbb{P}(A \cap B)=$
$\mathbb{P}(A \cup B)=$

Examples

Example 6.
Poker hand \longrightarrow STUD poker

$$
S=\{\quad\}
$$

$\mathbb{P}($ Royal Flush $)=$

How to count

Multiplication Principle.

An experiment has two steps. First step can be done in n_{1} ways, Second step can be done in n_{2} ways. The whole experiment may be done in

$$
n_{1} n_{2} \text { ways }
$$

If it has k steps which can be done in $n_{1}, n_{2}, \ldots, n_{k}$ ways, then the whole experiment may be done in

$$
n_{1} n_{2} \cdots n_{k} \text { ways }
$$

Examples

Examples.

(1) Want to eat a pizza
(2) Toss 6 coins
(3) Roll 112 dice

What about IP(70 sixes)?

How to count

Theorem.

The number of ways to select an ordered sample of k subjects from a population that has n distinguishable members is

- n^{k} if sampling is done with replacement,
- $n(n-1)(n-2) \cdots(n-k+1)$ if sampling is done without replacement.

Here, ORDER is IMPORTANT

Examples

Examples.

(1) Flip a coin 7 times
(2) 20 students, select president, vice-president, treasurer
(3) Rent 5 movies. Want to watch 3 movies on the first night.

How to count

Theorem.

The number of ways to select an unordered sample of k
subjects from a population that has n distinguishable members is

- $(n-1+k)!/[(n-1)!k!]$ if sampling is done with replacement,
- $n!/[k!(n-k)!]$ if sampling is done without replacement.
$n!/[k!(n-k)!]$ is a binomial coefficient " n choose k "

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

More about binomial coefficients

Birthday problem

- n people in a class
- 365 days/year, equally likely
- $\mathbb{P}($ at least two have same birthday)

$$
1-\frac{\#(A)}{\#(S)}=
$$

Figure: The birthday problem

Poker hands

52 cards $\longrightarrow 5$ card hand

$$
S=\{\text { all possible } 5 \text { card hands }\}
$$

(should shuffle times???)

$$
A=\text { Royal Flush }=\{A, K, Q, J, \text { all same suit }\}
$$

$$
B=\{\text { Four of a kind }\}
$$

Conditional probability

52 cards \longrightarrow draw 2 cards (without replacement)

$$
\begin{aligned}
& A=\{1 \text { st card drawn is Ace }\} \\
& B=\{2 \text { nd card drawn is Ace }\}
\end{aligned}
$$

Then

$$
\begin{array}{r}
\mathbb{P}(A)= \\
\mathbb{P}(B)=\{
\end{array}
$$

Conditional probability

Definition.

The conditional probability of B given that the event A occurred is

$$
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}, \quad \text { if } \mathbb{P}(A)>0
$$

Conditional probability

Example
Toss a coin twice.

$$
A=\{\text { a head occurs }\}
$$

$$
B=\{\text { a head and tail occurs }\}
$$

- $\operatorname{IP}(A \mid B)=$
- $\operatorname{IP}(B \mid A)=$

Conditional probability

Example
Toss a die twice.

$$
A=\{\text { outcomes match }\}
$$

$$
B=\{\text { sum of outcomes } \geq 8\}
$$

- $\mathbb{P}(A)=$
- $\mathbb{P}(B)=$
- $\mathbb{P}(A \cap B)=$
- $\operatorname{PP}(A \mid B)=$
- $\operatorname{PP}(B \mid A)=$

Properties

Note.

For any fixed event A with $\mathbb{P}(A)>0$,
(1) $\mathbb{P}(B \mid A) \geq 0$, for all events $B \subset S$,
(2) $\operatorname{IP}(S \mid A)=1$, and
(3) If $B_{1}, B_{2}, B_{3}, \ldots$ are disjoint events, then

$$
\mathbb{P}\left(\bigcup_{k=1}^{\infty} B_{k} \mid A\right)=\sum_{k=1}^{\infty} \mathbb{P}\left(B_{k} \mid A\right)
$$

More properties

Note.

For any events A, B, and C with $\mathbb{P}(A)>0$,
(1) $\mathbb{P}\left(B^{c} \mid A\right)=1-\mathbb{P}(B \mid A)$.
(2) If $B \subset C$ then $\mathbb{P}(B \mid A) \leq \mathbb{P}(C \mid A)$.
(3) $\mathbb{P}[(B \cup C) \mid A]=\mathbb{P}(B \mid A)+\mathbb{P}(C \mid A)-\mathbb{P}[(B \cap C \mid A)]$.
(4) For any two events A and B,

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B \mid A) .
$$

For 3 events:

Conditional probability

Example.

Recall the aces problem

$$
\begin{aligned}
& A=\{1 \text { st card drawn is Ace }\} \\
& B=\{2 \text { nd card drawn is Ace }\}
\end{aligned}
$$

- $\mathbb{P}($ both Aces $)=$

Conditional probability

Example.

Urn with 10 balls, 7 red and 3 green. Select 3 balls successively from the urn.

$$
\begin{aligned}
& A=\{1 \text { st ball red }\} \\
& B=\{2 \text { nd ball red }\} \\
& C=\{3 \text { rd ball red }\}
\end{aligned}
$$

- $\mathbb{P}($ all red $)=$

Good example

Two urns. First: 5 red, 3 green. Second: 2 red, 6 green 1 ball transferred. Select 1 ball.
$\mathbb{P}($ red $)=$

What if you don't look?

$\mathbb{P}($ second card is Ace $)=$

Good example (continued)

$\mathbb{P}($ red $)=$

What if you don't look?

$\mathbb{P}($ second card is Ace $)=$

Independence

Example.

Toss two coins

- $\mathbb{P}(1$ st $H)=$
- $\mathbb{P}(2$ nd $H)=$
- $\mathbb{P}($ both $H)=$
$\mathbb{P}(2$ nd $H \mid 1$ st $H)=$

Independence

Definition.

Events A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

otherwise they are dependent.

Intuition:

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \quad \text { when } A, B \text { independent }
$$

Properties

Proposition.

If A and B are independent then

- A and B^{c} are independent,
- A^{c} and B are independent,
- A^{c} and B^{c} are independent.

What about 3 or more events?

Mutual independence

Definition.
A, B and C are mutually independent if

$$
\begin{aligned}
\mathbb{P}(A \cap B) & =\mathbb{P}(A) \mathbb{P}(B), \\
\mathbb{P}(A \cap C) & =\mathbb{P}(A) \mathbb{P}(C), \\
\mathbb{P}(B \cap C) & =\mathbb{P}(B) \mathbb{P}(C),
\end{aligned}
$$

and

$$
\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)
$$

Mutual independence

Example.

Toss 100 coins.

$$
\mathbb{P}(\text { at least } 1 \text { head })=
$$

Mutual independence

Remark.
Pairwise independence does NOT imply mutual.

Examples.

(1) Toss coins, roll dice, etc.
(2) Draw two cards without replacement
(3) Space shuttle. 4 computers, A, B, C, D

$$
\mathbb{P}(\text { fail })=0.10
$$

Space shuttle (cont.)

Scheme: computers in series.
If computers independent,

$$
\mathbb{P}(\text { at least one computer works })
$$

Bayes' Rule

Theorem.

Let $B_{1}, B_{2}, \ldots, B_{n}$ be mutually exclusive and exhaustive and let A be an event with $\mathbb{P}(A)>0$. Then

$$
\mathbb{P}\left(B_{k} \mid A\right)=\frac{\mathbb{P}\left(B_{k}\right) \mathbb{P}\left(A \mid B_{k}\right)}{\sum_{i=1}^{n} \mathbb{P}\left(B_{i}\right) \mathbb{P}\left(A \mid B_{i}\right)}, \quad k=1,2, \ldots, n .
$$

Bayes' Rule (intuition)

Bayes' Rule: what does it mean?

Given (or know) a priori probabilities $\mathbb{P}\left(B_{k}\right)$. Collect some data, which is A.

How to update $\mathbb{P}\left(B_{k}\right)$ to $\mathbb{P}\left(B_{k} \mid A\right)$?

Example: misfiling assistants

Moe, Larry, and Curly

	Moe	Larry	Curly
Workload	60%	30%	10%

	Moe	Larry	Curly
Prior	$\mathbb{P}(M)=$	$\mathbb{P}(L)=$	$\mathbb{P}(C)=$

Misfiling assistants (cont.)

	Moe	Larry	Curly
Misfile Rate	0.003	0.007	0.010

	Moe	Larry	Curly
Posterior	$\mathbb{P}(M \mid A) \approx$	$\mathbb{P}(L \mid A) \approx$	$\mathbb{P}(C \mid A) \approx$

Random variables

- Experiment E
- Sample space S
- Calculate number X

Definition.

A random variable X is a function $X: S \rightarrow \mathbb{R}$ that associates to each outcome $\omega \in S$ exactly one number $X(\omega)=x$. The support of X is the set of X 's values:

$$
S_{X}=\{x: X(\omega)=x, \omega \in S\}
$$

Random variables

Example.

Toss a coin three times

Example.
 Toss a coin until tails

Example.

Toss a coin, measure time until lands

