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Discrete random variables

Discrete r.v.’s have supports like

SX = {u1, u2, . . . , uk} or SX = {u1, u2, u3 . . .}

Discrete r.v.’s have probability mass functions (PMFs)

fX (x) = IP(X = x), x ∈ SX . (1)

Every PMF satisfies

1 fX (x) > 0 for x ∈ S ,

2
∑

x∈S fX (x) = 1, and

3 IP(X ∈ A) =
∑

x∈A fX (x), for any event A ⊂ S .
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Discrete r.v.’s

Example.

Toss a coin four times. X = number of heads
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Mean, variance, standard deviation

The mean µ, a.k.a. IEX

µ = IEX =
∑
x∈S

xfX (x), (2)

The variance

σ2 = IE(X − µ)2 =
∑
x∈S

(x − µ)2fX (x), (3)

The standard deviation

σ =
√
σ2
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Example.

Toss a coin three times. X = number of heads. Find µ

Interpretation:
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Cumulative distribution function (CDF)

FX (t) = IP(X ≤ t), −∞ < t <∞.

FX is nondecreasing

FX is right-continuous

limt→−∞ FX (t) = 0 and limt→∞ FX (t) = 1.

Say X has “distribution”FX and write X ∼ FX or X ∼ fX

Example.

Toss a coin three times
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Discrete uniform distribution

X ∼ disunif(m) has PMF

fX (x) =
1

m
, x = 1, 2, . . . ,m

Example.

Roll a die

Example.

Select number at random from 1 to BLANK
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Find mean and variance of X ∼ disunif(m)
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Example

Find mean and variance for rolling a die
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Binomial distribution

Bernoulli trial: random experiment with success (S) and

failure (F )

X =

1 if the outcome is S ,

0 if the outcome is F .

Let IP(S) = p then the PMF of X is

fX (x) = px(1− p)1−x , x = 0, 1

IEX

Var(X )
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Binomial model

Bernoulli trials conducted n times,

the trials are independent,

the probability of success p does not change between

trials.

If X = number of successes then the PMF of X is

fX (x) =

(
n

x

)
px(1− p)n−x , x = 0, 1, 2, . . . , n

Write X ∼ binom(size = n, prob = p)
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Binomial model

check
∑

f (x) = 1:

n∑
x=0

(
n

x

)
px(1− p)n−x = [p + (1− p)]n = 1n = 1

find the mean:

µ =
n∑

x=0

x

(
n

x

)
px(1− p)n−x =

n∑
x=1

x
n!

x!(n − x)!
pxqn−x

=n · p
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1qn−x
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Example

Five child family. Let X = number of boys.

How to do it with R

> dbinom(3, size = 5, prob = 0.5)

[1] 0.3125
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Example

Roll 15 dice. Find IP(from 4 to 7 sixes).

How to do it with R

> diff(pbinom(c(4, 7), size = 15, prob = 1/6))

[1] 0.08850822
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Example

Seven child family, X = number of boys, find CDF.

How to do it with R

> dbinom(0:7, size = 7, prob = 1/2)

[1] 0.0078125 0.0546875 0.1640625 0.2734375

[5] 0.2734375 0.1640625 0.0546875 0.0078125
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Figure: Cumulative distribution function
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Another way to do it with R

> library(distr)

> X <- Binom(size = 7, prob = 1/2)

> X

Distribution Object of Class: Binom

size: 7

prob: 0.5

> d(X)(1) # pmf of X evaluated at x = 1

[1] 0.0546875

> p(X)(2) # cdf of X evaluated at x = 2

[1] 0.2265625
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Figure: Plot of a random variable
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