STAT 3743: Probability and Statistics

G. Jay Kerns, Youngstown State University

Fall 2010

Discrete random variables

Discrete r.v.'s have supports like

$$
S_{X}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \text { or } S_{X}=\left\{u_{1}, u_{2}, u_{3} \ldots\right\}
$$

Discrete r.v.'s have probability mass functions (PMFs)

$$
\begin{equation*}
f_{X}(x)=\mathbb{P}(X=x), \quad x \in S_{X} . \tag{1}
\end{equation*}
$$

Every PMF satisfies
(1) $f_{X}(x)>0$ for $x \in S$,
(2) $\sum_{x \in S} f_{X}(x)=1$, and
(3) $\mathbb{P}(X \in A)=\sum_{x \in A} f_{X}(x)$, for any event $A \subset S$.

Discrete r.v.'s

Example.

Toss a coin four times. $X=$ number of heads

Mean, variance, standard deviation

The mean μ, a.k.a. $\mathbb{E} X$

$$
\begin{equation*}
\mu=\mathbb{E} X=\sum_{x \in S} x f_{X}(x) \tag{2}
\end{equation*}
$$

The variance

$$
\begin{equation*}
\sigma^{2}=\mathbb{E}(X-\mu)^{2}=\sum_{x \in S}(x-\mu)^{2} f_{X}(x) \tag{3}
\end{equation*}
$$

The standard deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

Example.

Toss a coin three times. $X=$ number of heads. Find μ

Interpretation:

Cumulative distribution function (CDF)

$$
F_{X}(t)=\mathbb{P}(X \leq t), \quad-\infty<t<\infty .
$$

- F_{X} is nondecreasing
- F_{X} is right-continuous
- $\lim _{t \rightarrow-\infty} F_{X}(t)=0$ and $\lim _{t \rightarrow \infty} F_{X}(t)=1$.

Say X has "distribution" F_{X} and write $X \sim F_{X}$ or $X \sim f_{X}$

Example.

Toss a coin three times

Discrete uniform distribution

$X \sim \operatorname{disunif}(m)$ has PMF

$$
f_{X}(x)=\frac{1}{m}, \quad x=1,2, \ldots, m
$$

Example.
Roll a die

Example.
Select number at random from 1 to BLANK

Find mean and variance of $X \sim \operatorname{disunif}(m)$

Example

Find mean and variance for rolling a die

Binomial distribution

Bernoulli trial: random experiment with success (S) and failure (F)

$$
X= \begin{cases}1 & \text { if the outcome is } S, \\ 0 & \text { if the outcome is } F .\end{cases}
$$

Let $\mathbb{P}(S)=p$ then the PMF of X is

$$
f_{X}(x)=p^{\times}(1-p)^{1-x}, \quad x=0,1
$$

IE X
$\operatorname{Var}(X)$

Binomial model

- Bernoulli trials conducted n times,
- the trials are independent,
- the probability of success p does not change between trials.

If $X=$ number of successes then the PMF of X is

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

Write $X \sim \operatorname{binom}($ size $=n$, prob $=p)$

Binomial model

check $\sum f(x)=1$:

$$
\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}=[p+(1-p)]^{n}=1^{n}=1
$$

find the mean:

$$
\begin{aligned}
\mu=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} & =\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x} q^{n-x} \\
& =n \cdot p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} q^{n-x}
\end{aligned}
$$

Example

Five child family. Let $X=$ number of boys.

How to do it with R

> dbinom(3, size $=5$, prob $=0.5$)
[1] 0.3125

Example

Roll 15 dice. Find $\mathbb{P}($ from 4 to 7 sixes).

How to do it with R

> diff(pbinom (c (4, 7), size $=15, \operatorname{prob}=1 / 6)$)
[1] 0.08850822

Example

Seven child family, $X=$ number of boys, find CDF.

How to do it with R
> dbinom(0:7, size = 7, prob = 1/2)
[1] 0.00781250 .05468750 .16406250 .2734375
[5] 0.27343750 .16406250 .05468750 .0078125

Figure: Cumulative distribution function

Another way to do it with R

> library(distr)
> X <- Binom (size $=7$, prob $=1 / 2$)
> X
Distribution Object of Class: Binom size: 7
prob: 0.5
> d(X) (1) \# pmf of X evaluated at $x=1$
[1] 0.0546875
> $p(X)(2) \quad \#$ cdf of X evaluated at $x=2$
[1] 0.2265625
bability function of Binor

q

Figure: Plot of a random variable

