STAT 3743: Probability and Statistics

G. Jay Kerns, Youngstown State University

Fall 2010

Discrete random variables

Discrete r.v.'s have supports like

$$S_X = \{u_1, u_2, \dots, u_k\} \text{ or } S_X = \{u_1, u_2, u_3 \dots\}$$

Discrete r.v.'s have probability mass functions (PMFs)

$$f_X(x) = \mathbb{P}(X = x), \quad x \in S_X.$$
 (1)

Every PMF satisfies

- ① $f_X(x) > 0 \text{ for } x \in S$,
- $\sum_{x \in S} f_X(x) = 1$, and

Discrete r.v.'s

Example.

Toss a coin four times. X = number of heads

Mean, variance, standard deviation

The mean μ , a.k.a. $\mathbb{E} X$

$$\mu = \mathbb{E} X = \sum_{x \in S} x f_X(x), \tag{2}$$

The variance

$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \sum_{x \in S} (x - \mu)^2 f_X(x), \tag{3}$$

The standard deviation

$$\sigma = \sqrt{\sigma^2}$$

Toss a coin three times. X= number of heads. Find μ

Interpretation:

Cumulative distribution function (CDF)

$$F_X(t) = \mathbb{P}(X \le t), \quad -\infty < t < \infty.$$

- \bullet F_X is nondecreasing
- F_X is right-continuous
- $\lim_{t\to-\infty} F_X(t) = 0$ and $\lim_{t\to\infty} F_X(t) = 1$.

Say X has "distribution" F_X and write $X \sim F_X$ or $X \sim f_X$

Example.

Toss a coin three times

Discrete uniform distribution

 $X \sim \operatorname{disunif}(m)$ has PMF

$$f_X(x)=\frac{1}{m}, \quad x=1,2,\ldots,m$$

Example.

Roll a die

Example.

Select number at random from 1 to BLANK

Find mean and variance of $X \sim \operatorname{disunif}(m)$

Find mean and variance for rolling a die

Binomial distribution

Bernoulli trial: random experiment with success (S) and failure (F)

$$X = \begin{cases} 1 & \text{if the outcome is } S, \\ 0 & \text{if the outcome is } F. \end{cases}$$

Let $\mathbb{P}(S) = p$ then the PMF of X is

$$f_X(x) = p^x (1-p)^{1-x}, \quad x = 0, 1$$

 $\mathbb{E} X$ Var(X)

Binomial model

- Bernoulli trials conducted n times,
- the trials are independent,
- the probability of success p does not change between trials.

If X = number of successes then the PMF of X is

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n$$

Write
$$X \sim \mathsf{binom}(\mathsf{size} = n, \mathsf{prob} = p)$$

Binomial model

check $\sum f(x) = 1$:

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = [p+(1-p)]^{n} = 1^{n} = 1$$

find the mean:

$$\mu = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$
$$= n \cdot p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} q^{n-x}$$

Five child family. Let X = number of boys.

How to do it with R

Roll 15 dice. Find IP(from 4 to 7 sixes).

How to do it with R

```
> diff(pbinom(c(4, 7), size = 15, prob = 1/6))
[1] 0.08850822
```


Seven child family, X = number of boys, find CDF.

How to do it with R

- > dbinom(0:7, size = 7, prob = 1/2)
- [1] 0.0078125 0.0546875 0.1640625 0.2734375
- [5] 0.2734375 0.1640625 0.0546875 0.0078125

Figure: Cumulative distribution function

Another way to do it with R

```
> library(distr)
> X \leftarrow Binom(size = 7, prob = 1/2)
> X
Distribution Object of Class: Binom
 size: 7
prob: 0.5
> d(X)(1) # pmf of X evaluated at x = 1
[1] 0.0546875
> p(X)(2) # cdf of X evaluated at x = 2
[1] 0.2265625
```

bability function of Binor CDF of Binom(7, 0.5 antile function of Binom(9 0.20 Ω (b)d d)b က α 0.2 0.0 0.00 2 0.0 0.6

Figure: Plot of a random variable

q

p

х